Biokinetic model identification via extents of reaction
نویسندگان
چکیده
Model structure selection and parameter identification for biokinetic modeling of biological wastewater treatment processes is broadly accepted to be a complicated task. Contributing factors include (i) nonlinear behavior, (ii) lack of knowledge, (iii) lack of (accurate) measurements, and (iv) a large number of model parameters to estimate. Several strategies have been proposed in the wastewater engineering literature to deal with the complexity of the modeling task. These include (i) experimental design, (ii) determination of identifiable parameters, and (iii) stochastic nonlinear optimization. Despite these developments, model identification remains challenging. Extent-based modeling simplifies this task by identifying each reaction kinetics separately. The available method fits in a strategy where the reaction network (graph) and its stoichiometry (matrix) are first identified. Then, the extents of reaction are computed and the identification of the individual rate functions is made in terms of extents. In this work, the original extent-based method is modified to take nonlinear constraints and measurements into account. A simulated batch process is used to demonstrate the method.
منابع مشابه
Extent-based incremental identification of reaction systems using concentration and calorimetric measurements
Extent-based incremental identification uses the concept of extents and the integral method of parameter estimation to identify reaction kinetics from concentration measurements. The approach is rather general and can be applied to open both homogeneous and gas–liquid reaction systems. This study proposes to incorporate calorimetric measurements into the extent-based identification approach for...
متن کاملIncremental Model Identification for Reaction Systems using Concentration and Calorimetric Measurements
Extent-based Incremental Model Identification (IMI) uses the concept of extent of reaction and the integral method of parameter estimation to identify reaction kinetics from transient concentration measurements. This study proposes to incorporate calorimetric measurements into the extent-based IMI approach. Calorimetric measurements are added to concentration measurements for two main purposes:...
متن کاملExtent computation under rank-deficient conditions
The identification of kinetic models can be simplified via the computation of extents of reaction on the basis of invariants such as stoichiometric balances. With extents, one can identify the structure and the parameters of reaction rates individually, which significantly reduces the number of parameters that need to be estimated simultaneously. So far, extentbased modeling has only been appli...
متن کاملIdentification of Reaction and Mass-transfer Rates in Gas-liquid Reaction Systems
This paper deals with the identification of reaction and mass-transfer rates from concentrations measured in gas-liquid reaction systems. It is assumed that the reactions take place in the liquid bulk only. The identification proceeds in two steps: (i) estimation of the extents of reaction and mass transfer from concentration measurements, and (ii) estimation of the parameters of the individual...
متن کاملData Reconciliation in Reaction Systems using the Concept of Extents
Concentrations measured during the course of a chemical reaction are corrupted with noise, which reduces the quality of information. When these measurements are used for identifying kinetic models, the noise impairs the ability to identify accurate models. The noise in concentration measurements can be reduced using data reconciliation, exploiting for example the material balances as constraint...
متن کامل